Wavelet Approximations on Closed Surfaces and Their Application to Boundary-value Problems of Potential Theory

نویسندگان

  • Willi Freeden
  • Frank Schneider
چکیده

Wavelets on closed surfaces in Euclidean space R 3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of function values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at innnity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem. 1 The support by "Stiftung Rheinland-Pfalz f ur Innovation" and "Graduiertenkolleg Technomathematik, Kaiserslautern" is greatly acknowledged.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method

In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...

متن کامل

Prediction of Temperature distribution in Straight Fin with variable Thermal Conductivity and Internal Heat Generation using Legendre Wavelet Collocation Method

Due to increasing applications of extended surfaces as passive methods of cooling, study of thermal behaviors and development of mathematical solutions to nonlinear thermal models of extended surfaces have been the subjects of research in cooling technology over the years. In the thermal analysis of fin, various methods have been applied to solve the nonlinear thermal models. This paper focuses...

متن کامل

Application of Convolution of Daubechies Wavelet in Solving 3D Microscale DPL Problem

In this work, the triple convolution of Daubechies wavelet is used to solve the three dimensional (3D) microscale Dual Phase Lag (DPL) problem. Also, numerical solution of 3D time-dependent initial-boundary value problems of a microscopic heat equation is presented. To generate a 3D wavelet we used the triple convolution of a one dimensional wavelet. Using convolution we get a scaling function ...

متن کامل

Applying Legendre Wavelet Method with Regularization for a Class of Singular Boundary Value Problems

In this paper Legendre wavelet bases have been used for finding approximate solutions to singular boundary value problems arising in physiology. When the number of basis functions are increased the algebraic system of equations would be ill-conditioned (because of the singularity), to overcome this for large $M$, we use some kind of Tikhonov regularization. Examples from applied sciences are pr...

متن کامل

APPLICATION OF WAVELET THEORY IN DETERMINING OF STRONG GROUND MOTION PARAMETERS

Cumulative absolute velocity (CAV), Arias intensity (AI), and characteristic intensity (CI) are measurable characteristics to show collapse potential of structures, evaluation of earth movement magnitude, and detection of structural failure in an earthquake. In this paper, parameters which describe three characteristics of ground motion have been investigated by using wavelet transforms (WT). I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007